壹生大学

壹生身份认证协议书

本项目是由壹生提供的专业性学术分享,仅面向医疗卫生专业人士。我们将收集您是否是医疗卫生专业人士的信息,仅用于资格认证,不会用于其他用途。壹生作为平台及平台数据的运营者和负责方,负责平台和本专区及用户相关信息搜集和使用的合规和保护。
本协议书仅为了向您说明个人相关信息处理目的,向您单独征求的同意,您已签署的壹生平台《壹生用户服务协议》和《壹生隐私政策》,详见链接:
壹生用户服务协议:
https://apps.medtrib.cn/html/serviceAgreement.html
壹生隐私政策:
https://apps.medtrib.cn/html/p.html
如果您是医疗卫生专业人士,且点击了“同意”,表明您作为壹生的注册用户已授权壹生平台收集您是否是医疗卫生专业人士的信息,可以使用本项服务。
如果您不是医疗卫生专业人士或不同意本说明,请勿点击“同意”,因为本项服务仅面向医疗卫生人士,以及专业性、合规性要求等因素,您将无法使用本项服务。

同意

拒绝

同意

拒绝

知情同意书

同意

不同意并跳过

工作人员正在审核中,
请您耐心等待
审核未通过
重新提交
完善信息
{{ item.question }}
确定
收集问题
{{ item.question }}
确定
您已通过HCP身份认证和信息审核
(
5
s)

癌细胞突变作死,我们再补一刀!深度揭秘“合成致死”药物PARP抑制剂杀死癌细胞的机制

2021-06-02作者:论坛报芊蔚资讯
支持护理和治疗的相关问题非原创

“欲使其灭亡,必先使其疯狂。”


这句话用在癌细胞身上,恐怕再适合不过了。


从本质上讲,癌症就是一种基因病。当细胞内的基因突变积累到一定程度之后,细胞要么走向衰老死亡,要么就走向癌变


不过这些突变在赋予癌细胞不死和无限繁殖能力的同时,也给它们的毁灭埋下了伏笔。


这个毁灭伏笔的序曲在1922年。


那一年,在哥伦比亚大学摩尔根实验室工作的遗传学家Calvin Bridges,在黑腹果蝇身上发现一种有趣的现象:当某两个特定的基因同时突变失活时,会导致果蝇的死亡;而这两个基因单独任何一个突变失活,都不会给果蝇带来致命的伤害


1946年,Theodosius Dobzhansky给这种现象取了个名字,它就是今天大名鼎鼎的“合成致死”效应。


这个概念一沉寂就是51年。在考虑到癌细胞携带有大量基因突变之后,1997年,福瑞德·哈金森癌症研究中心的Stephen Friend敏锐地察觉到,这个“合成致死”的理念或许可以用到癌症的治疗中


在Stephen Friend看来,正常细胞癌变是个异常的举动。俗话说,“物极必反”,那我们干脆就让异常来得更疯狂吧


微信图片_20210601174648.jpg

合成致死理念


这个想法很疯狂,不过竟真的能让癌细胞走向死亡。


2014年,全世界第一个按照“合成致死”理念设计的抗癌药物PARP(多聚ADP核糖聚合酶)抑制剂Olaparib,获得FDA批准用于治疗卵巢癌。随后,在2016年和2017年,PARP抑制剂Rucaparib和Niraparib先后闪亮登场。


一种全新的抗癌手段崛地而起。


“破罐子破摔”


实际上,大部分细胞从正常走向癌变,并不是说它们的基因天生就不好,而是因为在生长的过程中,细胞的DNA会不断遭受内在和周遭各种不利因素的夹击,例如,辐射、化学毒物、细胞自身有害代谢产物、DNA自己复制错误等,导致癌症相关基因发生了突变,最终导致了癌症。


据估计,人体每个细胞每天产生的单链DNA损伤数约为10000个,如果把其他损伤也都算上的话这个数据又要翻10倍,变成10万个


与DNA遭受的损伤相比,癌症的发生风险就显得微不足道了,这主要得益于人体精密、复杂而高效的DNA修复系统。


在DNA损伤中,最严重的损伤是单链断裂和双链断裂,不过单链断裂更常见。这些断裂如果不能得到及时、准确的修复,会使基因组变得不稳定,进而引起癌变,甚至直接导致细胞死亡。


微信图片_20210601174651.jpg

DNA单链断裂(SSB)和双链断裂(DSB)示意图


为维持正常生理功能,细胞必须有多种DNA损伤发现和修复机制,使受损的DNA得到及时精确的修复。 


对于单链断裂而言,它的修复主要依赖于PARP,这个酶在人体内有17种,它们虽然长得有些像,但功能却不尽相同。


目前的研究认为,DNA损伤修复依赖的PARPs主要包括PARP-1和PARP-2,它俩都能精准地识别DNA的伤口,并与DNA亲密结合。只不过在修复DNA损伤的过程中,PARP-1发挥着90%以上的功能,PARP-2更像是个备胎


而对于双链断裂而言,它虽然少,但是情况更严重,如果不能及时修复,细胞的DNA就会变得不稳定,细胞最终走向死亡。


所以双链DNA断裂有两种主要的修复方式。一种是非同源末端连接(NHEJ)修复,它更像个紧急救火队长,先不管修复的对不对,把断掉的DNA连上再说。这种方法最主要的优点是快,但是非常容易出错,一旦出大问题,对细胞来说有可能就是毁灭性的打击。


微信图片_20210601174653.jpg

DNA断裂的修复方式一览


另外一种是同源重组(HR)修复途径,参与这种修复方式的蛋白非常之多例如BRCA、ATM、RAD51等等,其中最为人所熟知的是BRCA蛋白。这种修复方式像外科手术,是一种高保真、无错误的修复方式。


对于癌细胞而言,既然它是基因突变导致的,那肯定是上述修复过程没起作用,或者工作不到位造成的。


鉴于癌细胞也要维持自身基因组的稳定性,因此,作为一个“理性”的癌细胞,它们肯定不会让上述所有的DNA损伤修复机制全部瘫痪。不过为了保持进化的活力,部分修复方式失去功能是可能的。


微信图片_20210601174821.jpg



这也就给了科学家们可乘之机。以DNA修复为靶点,把癌细胞这个DNA已经出现大量突变的“破罐子”彻底捣毁


2005年,“摔破”癌细胞这个“破罐子”的曙光初现。


两个独立研究团队背靠背在顶级期刊《自然》发表重要研究成果,首次证实PARP抑制剂与BRCA1或BRCA2突变之间存在“合成致死”的相互作用


合成致死治疗癌症的大门打开了。


“扼住”PARP的咽喉


结合前面介绍的DNA修复机制,你会发现PARP与BRCA是一对合成致死冤家这事儿并不难理解。癌细胞的DNA再混乱,它们也还是需要维持自身基因组的稳定。


如果负责双链断裂修复的BRCA突变失活了,我们再把管单链断裂的PARP抑制掉,癌细胞中每天出现的大量单链断裂就会变成双链断裂,最终导致癌细胞死亡。


不过,这个合成致死的机制看似简单,其实要设计一个优秀的PARP抑制剂并没有那么简单。



微信图片_20210601174657.jpg

PARP抑制剂“合成致死”机制


要把这个事情说清楚,我们还得从PARP修复单链DNA断裂的过程说起。


在细胞内,一旦PARP发现DNA上存在单链断裂的缺口,就会立即结合上去,这种结合会激活PARP的催化活性。


此时,游荡在PARP周围的烟酰胺腺嘌呤二核苷酸(NAD+这个物质最近非常火,抗衰老、抗癌都有它的份儿)会立即与PARP的活性位点结合,结合后的复合体会把周围参与DNA修复效应子统统拉过来,填补上DNA断开的缺口。与此同时,染色质也会变得松弛,PARP复合体就顺利从损伤缺口脱离下来,回到之前的失活状态待命。


在这个修复的过程中,NAD+与PARP的结合,就是那个关键的点


实际上,早在30年前,小分子烟酰胺类似物就被证明可以竞争性抑制这个过程,并增强DNA损伤剂硫酸二甲酯的细胞毒性。


目前在临床中使用的所有PARP抑制剂,都有一个与NAD+竞争结合PARP的烟酰胺部分,因此它们抑制PARP催化活性的能力是类似的;然而,由于不同的抑制剂结构存在较大差异,它们对不同PARP家族成员的选择性存在一定的差异。


微信图片_20210601174700.jpg

PARP抑制剂结构比拼:红色部分为共通部分


可别小看了这个差异,毕竟科学家对PARP-3的认知还不够


虽然从结构上看,PARP-3与PARP-1也长得很像,但PARP-3在组织分布、生物学功能方面,与PARP-1却表现出很大的不同[。


除此之外,之前还有研究表明,当PARP-1表达被抑制之后,PARP-2的表达会代偿性地增加,以顶替PARP-1的职能;但PARP-3却不会在PARP-1和PARP-2表达被抑制后代偿性增加。而且也有研究表明,特异性抑制PARP-1和PARP-2,但不抑制PARP-3,就能让肿瘤消退


这些似乎都表明PARP-3有其独特的生物学功能


微信图片_20210601174704.jpg

部分PARP抑制剂选择性的比较


由此可见,PARP抑制剂抑制PARP-3的活性,可能不仅没有抗癌效果,而且可能还有意想不到的副作用


“诱捕”PARP


在研究PARP抑制剂的过程中,科学家们还发现了一个很奇怪的现象。


PARP抑制剂对癌细胞的杀伤力大于敲除PARP基因本身,这意味着PARP抑制剂的抗癌效果不仅仅在于抑制PARP的活性,背后可能还有其他的原因。


后来科学家发现,这个现象要归结于PARP抑制剂对PARP的“诱捕”作用


所谓“诱捕”作用,说的是PARP抑制剂竞争性结合到PARP酶上之后,会导致与受损DNA结合的PARP-1和PARP-2被困在DNA上下不来了,同时直接造成其他的DNA修复蛋白也结合不上来了。后果是,DNA断裂不仅不能被修复,而且还从单链断裂变成双链断裂,最终导致细胞死亡。


实际上,科学家已经认识到,“诱捕”PARP并把它“钉”在DNA上,才是PARP抑制剂消灭癌细胞的最大杀器。因此,在比较单一PARP抑制剂抗癌活性时,必须基于其捕获效力。


微信图片_20210601174706.jpg

PARP抑制剂在BRCA2突变模式小鼠中的效果


它们捕获能力之间的这种差异,也反映在了抗癌效果上。


与众不同,潜力无限


可能你已经发现了,上面介绍的都是PARP抑制剂与BRCA突变之间的协同致死作用,但是以BRCA为代表的同源重组通路并非只有BRCA这一条路,对于BRCA基因没有突变的癌细胞,PARP抑制剂是不是也有效果呢?


其实,2005年的研究就已经表明:PARP抑制剂对于BRCA没有突变的癌细胞也有杀伤力


只不过与携带BRCA突变的癌细胞相比,BRCA没有突变的癌细胞对PARP抑制剂的敏感性差了近1000倍


微信图片_20210601174709.jpg

BRCA突变比不突变对PARP抑制剂更敏感


这也就意味着,对于那些BRCA基因没有突变的肿瘤,在使用PARP抑制剂治疗时,需要更高的药物暴露,才能到达与BRCA突变的肿瘤同样的效果


当然,我们对于PARP抑制剂的认知还刚刚起步,它应该还有很多未知的技能等着我们去发现。


例如德州大学MD安德森癌症中心的研究团队发现,抑制肿瘤细胞的PARP修复通路,竟然可以触发STING免疫通路,进而募集杀伤性T细胞进入肿瘤


微信图片_20210601174711.jpg

抑制PARP激活免疫通路的机制


这个研究暗示,PARP抑制剂联合免疫检查点抑制剂将大有可为


PARP抑制剂的未来,可期。


来源:奇点网

微信图片_20200824111328.jpg

200 评论

查看更多