壹生大学

壹生身份认证协议书

本项目是由壹生提供的专业性学术分享,仅面向医疗卫生专业人士。我们将收集您是否是医疗卫生专业人士的信息,仅用于资格认证,不会用于其他用途。壹生作为平台及平台数据的运营者和负责方,负责平台和本专区及用户相关信息搜集和使用的合规和保护。
本协议书仅为了向您说明个人相关信息处理目的,向您单独征求的同意,您已签署的壹生平台《壹生用户服务协议》和《壹生隐私政策》,详见链接:
壹生用户服务协议:
https://apps.medtrib.cn/html/serviceAgreement.html
壹生隐私政策:
https://apps.medtrib.cn/html/p.html
如果您是医疗卫生专业人士,且点击了“同意”,表明您作为壹生的注册用户已授权壹生平台收集您是否是医疗卫生专业人士的信息,可以使用本项服务。
如果您不是医疗卫生专业人士或不同意本说明,请勿点击“同意”,因为本项服务仅面向医疗卫生人士,以及专业性、合规性要求等因素,您将无法使用本项服务。

同意

拒绝

同意

拒绝

知情同意书

同意

不同意并跳过

工作人员正在审核中,
请您耐心等待
审核未通过
重新提交
完善信息
{{ item.question }}
确定
收集问题
{{ item.question }}
确定
您已通过HCP身份认证和信息审核
(
5
s)

研发肾癌多模态AI模型,为肾透明细胞癌患者的复发风险评估与个体化治疗提供关键支撑 | 今日前沿

2025-12-03作者:CMT琳资讯
原创

近日,上海交通大学医学院附属仁济医院泌尿科郑军华教授、翟炜研究员团队联合多中心力量,在肾癌精准预后领域取得重大突破。团队研发的多模态预测复发评分(MPRS)模型,成功发表于Nature旗下全球数字医学顶尖期刊《npj Digital Medicine》,为透明细胞肾细胞癌(ccRCC)患者的复发风险评估与个体化治疗提供了关键支撑。

肾细胞癌是泌尿系统高发恶性肿瘤,其中透明细胞肾细胞癌占比达70%。尽管手术是主要治疗手段,但约20%~30%的患者术后会出现复发转移。当前临床常用的Leibovich评分、UISS评分、KEYNOTE-564风险分层等工具存在明显局限,例如仅依赖肿瘤大小、TNM分期等临床病理特征,无法整合多模态预后信息;而分子检测类模型成本高、难普及;更重要的是,上述工具往往易出现“风险误判”——要么低估高风险患者导致治疗不足,要么高估低风险患者造成过度治疗,给患者带来身心与经济双重负担。


针对这一临床痛点,研究团队整合国内六家中心及TCGA数据库共1648例患者的临床特征、术前增强CT影像与术后病理全切片图像,创新构建了MPRS多模态AI模型。与单一模态模型及经典临床工具(Leibovich评分、UISS评分、KEYNOTE-564临床试验的风险分类)相比,该模型展现出压倒性优势:内部验证队列C指数达0.886,外部验证队列达0.838,3年与5年复发预测AUC值稳定在0.829以上,且在不同中心、不同设备数据中均保持优异性能,校准度与稳健性远超现有工具。



更值得关注的是,MPRS模型实现了精准的风险再分层:成功将83.3%被KEYNOTE-564误判为低风险的复发患者重新归为高风险,避免错失辅助治疗时机;同时将57.7%误判为中/高风险的非复发患者调整为低风险,杜绝不必要的治疗损伤。通过SHAP分析与Grad-CAM可视化技术,模型还能精准识别肿瘤不规则边缘、坏死区域等关键预后特征,其判断逻辑与临床病理认知高度契合,进一步验证了结果的可靠性。


为推动临床转化,团队采用常规诊疗中易获取的CT与病理图像数据,无需额外增加分子检测等高昂成本,且基于轻量化ResNet架构设计,大幅降低临床部署门槛。该模型不仅能帮助医生制定个性化随访方案与治疗策略,还为肾癌临床研究的风险分层提供了标准化工具,有望重塑ccRCC的诊疗流程。



本研究由仁济医院泌尿科臧欣贻博士、上海交通大学夏瑜葭博士、安徽医科大学第一附属医院肖海兵教授、台湾高雄长庚纪念医院罗浩伦教授担任共同第一作者;哈尔滨医科大学附属第四医院王科亮教授、安徽医科大学第一附属医院梁朝朝教授、上海交通大学俞章盛教授、仁济医院泌尿科郑军华教授和翟炜研究员担任共同通讯作者。该研究得到了国家自然科学基金、国家重点研发计划以及上海市教委人工智能促进科研范式改革赋能学科跃升计划专项等多个项目支持,并得到了上海交通大学和仁济医院的大力支持。


来源 | 上海交通大学医学院附属仁济医院

200 评论

查看更多